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Explicit Estimates for O( x; 3, 1) and 4( x; 3, 1) 

By Kevin S. McCurley 

Abstract. Let O(x; 3,1) be the sum of the logarithms of the primes not exceeding x that are 
congruent to I modulo 3, where I is I or 2. By the prime number theorem for arithmetic 
progressions, O(x; 3,1) - x/2 as x - o0. Using information concerning zeros of Dirichlet 
L-functions, we prove explicit numerical bounds for O(x; 3,1) of the form j0(x; 3,1) - x/21 < 
1X, x > x(X(e). 

5. Introduction. For positive integers k and 1, define 

O(x; k,1) = E logp, A(x; k,l) = E logp, 
psx p x 

p=I(modk) pa_ I(modk) 

where the sums extend over primes p and prime powers pa, respectively. In a 
previous paper [4] we derived estimates {(x; k,l) and #(x; k,l) when k ? 10. We 
now consider the case k = 3, 1 = I or 2. For convenience we shall continue the 
numbering of sections and equations from [4]. Unless otherwise noted we shall also 
use the same notation. 

In the case k v 10 our estimates were primarily based on an explicit zero-free 
region for Dirichlet L-functions L(s,x) and an estimate for N(T,X), the number of 
zeros of L(s,x) in a > 0, jtl < T. In the case of a fixed modulus such as k = 3, we 
can make use of certain computational information concerning the zeros of the zp(k) 
L-functions formed with characters modulo k. For example, if the generalized 
Riemann hypothesis were known to hold for zeros up to a height H (H >> klogk), 
then by the methods of Section 3 we could prove that 

sP(x; k,l) - x << x1/2log2 kH + x ( IogkH 1 

cp(k) (p(k)Hj 

In particular, if the generalized Riemann hypothesis holds, we can take H = x to 
obtain 

sp(x; k,l) - k | x'/2log2kx; 
T(k) 

a well-known result. 
In the case k = 3 there are two characters; a principal character Xo and a real 

nonprincipal character X 1. The zeros of L (s, X 0) have been studied extensively, since 

(5.1) L(s,X0) = (1 - 3`S)(s). 
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In particular, calculations of Brent [1] showed that if A = 32585736.4, then 
N(A,X0) = 150000000 and all of the zeros p = fB + iy with I-yI < A have ,B = 

Much less is known about the zeros of L(s,XI), but Davies [2], [6] calculated the 
first 2500 zeros in the critical strip to withiin 10-6. Spira [8] also calculated the first 6 
zeros to within 10- 17. The calculations of Davies showed that if HI = 2571.388782, 
then N(HI,XI) = 5000, and all of the zeros with IyI < HI have :- ='. 

Using this information about the zeros and the methods of Section 3, we are able 
to tabulate values of L and E such that 

(5.2) 3x;3l)-j < ex, x >e e, 

for I = 1 or 2. As an application of these results, we prove the following 

THEOREM 5.1. The maxinmum value of 9(x; 3,2)/x occurs at x = 1619, and 
furthermore 

O(x; 3,2) < .50933118x, x > 0. 

THEOREM 5.2. If x > 0, then 

9(x; 3, 1) < .5040354x. 

THEOREM 5.3. If x > xo, then 9(x; 3,1) > cx, where xo and c are given by the 
following tables. 

l- 1 l=2 

xo C x( c 

151 .40722 47 .40755 
727 .45116 233 .45398 

17377 .49026 3761 .49042 
91807 .49585 21317 .49595 

6. A Zero-Free Region for L(s,xI). In this section we prove a result which is a 
slight improvement of Theorem 1 of [3]. 

THEOREM 6.1. If R = 9.645908801, then L(s,X) t O for Itl > 2000 and a > 1- 
1I/( R log(l t 1/4)). 

The proof is essentially the same as that of Theorem 1 of [3], so we indicate only 
the necessary changes. Lemma 2 of [3] can be replaced by 

LEMMA 2 . If 1 < a < 1.055, t > 2000, 1 < m < 4, s = a + imt, 1 = 

(1 + 1 + 4a2)/2, s, = a + imt, andK = (5 - J5)/IO, then 

2 [r (2 ) Ar5 F 2 ) (2 ) lOOOm 

The proof of Lemma 2' is the same as for Lemma 2, except that we use 

(oc u II I- du IT Re| u 2 dii < u < - 
0 (u + (z + a)/2)2 2 ou + (z + a)/212 2y 
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In place of (9) of [3] we then obtain 

IV+aIF%r?lL(sa I< aOG Mt (?a?+a) 'Z 'Z 
-Re - -1 lg 22 ? ? 

2 r 2 J 2 F2 4M22 4mt 4f5mt 

<KlogMt 
2 1000&m 

If a < 1.055 and t 2000, the proofs of Lemmas 5, 6, and 7 yield 

(6.1) f(Y,Xl) < Klog 1 +000 a-/- 

*Y 1 
(6.2) f(2y,xo) < Klogg 2000 + T(3,1), 

2000 

(6.3) f(3y,XI) < Klog 2?+ 3000' 
2,y I 

(6.4) f(4y,X0) <Klog-+ ? + T(3,1). 
'Z 4000 

For a < 1.055, the proof of Lemma 3 yields 

f(0, x4) < - .9838 - s(3) < 1 - 1.3862. 

It follows from (6.1), (6.2), (6.3), (6.4) and (27) of [3] that 

a ,B< "+ K(a, + a2 + a3 + a4)log - 1.3862%a 

+ , am(K log 2M + I000 + K(ai + a3)Iog3 + (a2 + a4)T(3,1) 

ao + K(a? + a2 + a3 + a4)og Y, 
a- 4 

s ince T(3, 1) < .65. Theorem 6.1 then follows by choosing a = 1 + .33901/log(y/4). 

7. Estimates for N(T,Xo)) and N(T,XI). In this section we improve slightly the 

results of Section 2 for the characters X( and Xi. Henceforth we shall write Ni(T) for 

N(T,Xi), i = 0,1. From (2.17) we obtain immediately 

(7.1) INO(T) - FO(T)I < RO(T), T> 7436, 

where 

T T 
F( (T.) log , Ro(T)= B logT + B29 

'I 2'ne9 

B1 = .49144 and B2 = 4.926. 

For the zeros of L (s, X ) we prove the following result. 

THEOREM 7. 1. If T > 100, then 

(7.2) NIN(T) - FI(T)I < RI(T)q 

where 

F, (T) = -log 2 RI (T) = C log T + C2, 
'=T 2re 9 

C1 'no2 and C2 =4.7928. 
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Note that this notation differs from that of Section 2. The proof of Theorem 7.1 is 
the same as that of Theorem 2.1. except for the following changes. In (2.8) we have 

(4 2 ) 2 1 2e +4 4Tg 2 

1 /2Ti 0 
4 3 3T' 

From 

T_9_ 2T 9 77 
0 < Tlog(I + 2 )+ tan <(3) 167T 8 

we obtain 

N1(T) = FI(T) + .255710 + -z.argL(s, X ) 
IT 

in place of (2.9). Equation (2.12) is replaced by 

if 37 I/logif(a( + (I + 2'q)e ')IdO 
2T /2 

< 
N 

(I + 2ii)log(.4872T) + 10(1 + 11). 

Using this, we obtain (7.2) with 

+2q 
C1 = vlog2 

= 41ogg(1 + ii) _ 2log;(2 + 21q) C = g - log2 

+ 2 log( 23 + 21 ) - .0745 - .66043ii. 

If iq = 4. this yields the result. 

8. Estimation of 41(x; 3,1) and O(x; 3,!). Let H1 and A be as in Section 5. and 
define H( = 7436.76651. Our starting point is the following. 

THEOREM 8.1. If m is a positive integer, 0 < 8 < (x - 2)/mx. and I is 1 or 2. then 

(8.1) - 41(x; 3,)- 2 x2 

<2(+ 2 )x i Z(Xo) IPI pE_-(XI) IPI f 

I Y I,< Ito} IYI '< /1I 

+ -Anl(s) 
+ +Ez(1) 

2 ( PE:(X() IYI II +pEX,) IYI ) I~~I + IyI"~ pez(x1)II 
4<y,C <A .4 < 1IYI 1<YI 

+ I 2og X21 ) + 1.39305] + 4 
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Proof. As in the proof of Theorem 3.6, we obtain 

(8.2) IEm (X, +?aX)I 

2 2(I '~=_( p 2 ( X)PI pEz(Xi) IPII 

I m x II pi 

+ -(6X)mAm (6) E 
+-2 tA (8 PE=Z(X()) IP(P + I)-(P + M)l 

LH( < I yl 

+ 2 IP(P + ? 1) (P + M)) 

'1o<IYI ~ ~ H <IY 

pE (z(x)IPP 1 )? 1 
HI <I-yl 

2 pe-z(xo)?j'. 
?(1?i?"?Y)di dV 

= ( 

+ f?ax f?aXf(x +y? + +Ym)dy, .dym| 

Note that XI is primitive, and the only zeros in z(X0) with /3 = 0 occur at 
p = 2vTin/log3, 0 < Int < cx. Hence we can write the contribution from the purely 
imaginary zeros as 

xm 1+8 1+8 E [X(l + y, + + Ym)] P 
2 ~~~O<Inl< oo dy dm 

p = 2 frin/log 3 

The interchange of summation and integration is justified by the fact that the partial 
sums are uniformly bounded. The integrand may be written as 

log3 sin(nz) 

n=1 

where 

2'Z 
z = 1 log[x(l + Y1 + + ym)]. log 3 

In particular the integrand is bounded by (log3)/2 in absolute value. Hence the 
contribution from the imaginary zeros in (8.2) does not exceed 

(S 3) ~~x |8 
a log 3 dy y=(8x)n log 3 (8.3) ?Pidy.... dym3= 

From (3.10) we obtain 

(8.4) If() < 9og( 1+ Id + d2l, 

since d2 = - 2 from (3.5). Furthermore we have 

(8.5) di +d2= -(log2v- log3) -Xl(l) +(O,X1). 
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Spira [9] gives the values L(O,Xl) I and L'(O,X1) .31606627554754. It follows 
from (8.4) and (8.5) that 

(8.6) If(X +Y1 ? + Y,)j g(2X )+ 1.11839. 

The theorem then follows from Lemma 3.4, (8.2), (8.3), (8.6) and the calculations of 
Brent and Davies mentioned in Section 5. 

The first two sums involving zeros on the right of (8.1) may be calculated from the 
known zeros. From the tables of Davies [61, the author calculated that 

(8.7) E 
I 

K 8.7642 
pe(=:Xl) 1II 
I I it 

and Schoenfeld [71 gave the estimate 

(8.8) E 
I 

< 7.93485. 
p e :(Xo) 
IYI< I1,( 

From Schoenfeld we also obtain that NA,( HO) = 14384. 
Note that the bound given on the right of (8.1) is decreasing in x, so that for the 

purposes of (5.2) we may henceforth assume that Iogx = L. 

LEMMA 8.2. If L < (in + l)Rlog2(A/17). then 

Iye- 
/I - 

Iy , a x -1/2 ~~+ <:114 EZ I + El. + E3, 

pE=-(Xo) 1jflm 
-4 pE:(XQ) I'1171 

1J(<j-yj,A A< IYI 

where 

El = e-'-/2[G(HO-) --G(A)], 

G(t) = i [ -/N((t) +(m + 1)(l + m log(t/27Te)) +I(Blot + B + ) 
=t"'[ t + 'm2 t + m+ I 2j 

1 -~L 
E2 = 2 exp RlogTi/17) [Fo() + R((A) -)N((A)]1Af?+ , 

L n2iL1~ log(l17/2) /T L / mL 
3 m7rRI7 m K2 2 R VI + 7r 1 V, ) mRK K 2 R2 VI) 

+B / L KB 2 /(m + I)L _V 
17mn+ I(m + 1)R K L R2). 

mR I (m L I)R A 
VI = log V2 V log j;. 
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Proof. Theorem 1 of Rosser and Schoenfeld [51 states that if p = ,B + iy is a zero 
of t(s), then 

< 1-l> 1 

R log(lyI/17) h 
From this and the fact that 1 - I is a zero whenever p is, we obtain 

(8.9) < IX-1/2 + L ? Pm(IYI)' 
Pez(XO) IyI PEz(Xo) hI pEz(xo) 

A <'yl A <Iyj A <jyj 

where 

X- I/IRIog(t/1 7> 
100 ~m+I 

t 

If Ho < u < v, then 

1 ' sv dNO(t) 

PEz(xo) IMI U t 
u<IyI<v 

N0(v) _N0(u) ~ vN (t) = 
+I '(v)_No(u)+ ( m + 1) 2 dt. 
vMI um+I +(m4u 

If we use (7.1) to estimate the last integral, we obtain 

(8.10) E 
I 

< G(u) - G(v). 
pEz(XO) IYl+I 
u<jyISv 

We now write 

E Tm(Iyl) = fcm(t)dNo(t) 
pez(X0) A 

A <I-YI 

= -Pm(A)No(A) -f 4(t)NO(t)dt. A 

The condition L < (m + 1)R log2(A/17) implies that pA(t) < 0 for t > A; hence 
(7.1) yields 

? p,,(Iyl) < -zqm(A)NO(A) -f qgm,(t)[Fo(t) + R0(t)]dt 
pEz(xO) A 

A<IyI 

= TPm(A)[FO(A) + RO(A)-NO(A)] +j 9Tm(t)[FO(t) + R'(t)]dt 

= 2(62 + ?3)- 

The lemma then follows from (8.9) and (8.10). 

LEMMA 8.3. If L s (m + l)Rlog2(HI/4), then 

< 
+ 4 + Es5 + E66, 

Pez(X1) I <Y 4+ +6I 

HI < IYI 
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where 

-e1/2 -N1(HI) (m + 1)(1 + mlog(3H1/21re)) 
E4 2=- H 2H' +1 1 

+ 1 l ( lgH + C1 + C2)l. 
Hol< + m +1 

25 2 Rlog(H,/4) + R(H)- 

C6 r7mR4 K2(2L2 R v3) + 
lo4r \mR K// (2\/R 

L V3 

4 I1 (m + 1)R Ki( 2 R/ ) 

V3 
mR 

log I(+1 V4 
( L )R log Hi 

L 4o-- ?=VL 4o-i 

The proof of Lemma 8.3 is virtually identical to that of Lemma 8.2, except that we 
use Theorem 6.1 for the zero-free region and (7.2) in place of (7.1). 

As an immediate consequence of Theorem 8. 1, Lemmas 8.2 and 8.3, and (8.7) and 
(8.8) we obtain the following. 

COROLLARY 8.4. If x > el, L < (m + l)Rlog2(HI/4), 0 < 8 < (x - 2)/mx, and 
I = 1 or 2, then 

4(x; 3,I) - < 1 + 2 )(8.349525)e-- + 

+ 
I 

A,, (S) + 1.39305 + Ilog 42 

Using Corollary 8.4 we tabulate in Table 4 values of E and L for which (5.2) holds. 
The functions K,(z,y) that occur in E3 and ?6 are easily estimated by the methods of 
Section 4. The values of m and 8 used for each L were chosen experimentally and are 
also listed in the table. 

Theorems 5.1, 5.2, and 5.3 follow from the estimates of Table 4 and direct 
computation of O(x; 3,1) and O(x; 3,2). The author calculated 0(p; 3,1) and 
O(p; 3,2) for every prime p, p < 108. These calculations were performed in double 
precision on CDC Cyber computers at the University of Illinois and Michigan State 
University, using a standard sieve procedure to generate the primes. 

If x ~107, then Table 4 yields 

O(x; 3,2) < .5058681 x. 

Theorem 5.1 then follows by direct calculation for x < 107, since O(x; 3,2)/x is 
decreasing for x between primes. The proof of Theorem 5.2 is similar, except that we 
use direct calculation for x < 108. 
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TABLE 4 

L e m 8 

13.815 1.1636(.-2) 6 1.8391(-3) 
16.118 5.8681(-3) 6 1.8325(-3) 
18.420 4.0354(.-3) 6 1.8239(--3) 

20.723 3.4445(-3) 6 1.8147(-3) 

23.025 3.2466(-3) 6 1.8055(-3) 
27.631 3.1385(-3) 6 1.7870(-3) 
35 3.0789(-3) 6 1.7577(-3) 
50 2.9769(-3) 6 1.6996(-33) 
75 2.8083(-3) 5 1.8704(-3) 
100 2.6317(-3) 5 1.7529(-33) 
150 2.3114(-3) 5 1.5397(-3) 
200 1.9870(-3) 4 1.5883(-3) 
250 1.7027(-3) 4 1.3612(-3) 
300 1.4137(-3) 3 1.4127(-3) 

350 1.1706(-3) 3 1.1706(-3) 
400 9.6194(-4) 2 1.2818(-3) 

450 7.5760(-4) 2 1.0096(-3) 
500 5.9764(-4) 2 7.9653(-4) 
600 3.7386(-4) 2 4.9834(-4) 
700 2.3566(-4) 2 3.1415(-4) 

800 1.4980(-4) 2 1.9971(-4) 
900 9.6109(-5) 2 1.2814(-4) 
1000 6.2280(-5) 2 8.3036(-5) 

If x > 108, then from Table 4 and (4.1) we obtain 

O(x; 3,1) > .4959646 x - 1.001093 xl/2 - 3x1/3> .49585 x. 

The estimates for O(x; 3, 1) in Theorem 5.3 then follow from direct calculation for 
xo < x < 108. 

If p is a prime, note that p2m * 2 (mod 3) and p2m+ p (mod 3). It follows that 
00 

4(x; 3,2) - O(x; 3,2) = E O(xlA2?2+1); 3,2). 
m=I 

Let x > 108. The number of nonzero terms in the sum with m > 1 does not exceed 
logx/2 log2 - 3/2; hence from Theorem 5.1 we obtain 

{(x; 3,2) - O(x; 3,2) < .50933118 x/l + x'l/5 logx 2 2 )] < 1.1 x 

It follows from Table 4 that 

O(x; 3,2) > .4959646 x - 1.lx'3 > .49595 x. 

Theorem 5.3 then follows by direct calculation for x0 , x < 108. 
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It is interesting to note that Theorems 5.1 and 5.3 are essentially best possible as 
they are stated, but Theorem 5.2 is probably not best possible. The calculations 
performed by the author show that for x < 108 the maximum of O(x; 3. l)/x occurs 
at x = 52553329, and that O(x; 3, 1) < .499935x for x < 108. It would require 
significantly more calculation to determine the point at which O(x; 3, 1)/x assumes 
its maximum value. 

This paper is based on the work contained in the author's Ph.D. thesis, written 
under the direction of Professor Paul T. Bateman at the University of Illinois. The 
author acknowledges with gratitude many valuable discussions with Professor Bate- 
man. 
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